KI im Scanner: Wie Künstliche Intelligenz bei der Dokumentenklassifizierung unterstützt

LinkedIn
XING
Facebook
Twitter

Effizienzsteigerung, Kosteneinsparungen, Automatisierung: Wohl kaum einer Technologie wird aktuell ein größeres Potenzial zugeschrieben als der Künstlichen Intelligenz (KI). Schrittweise halten entsprechende Technologien Einzug in den Büroalltag. Auch im Bereich des Dokumentenmanagements machen sich immer mehr Unternehmen die KI zunutze – zum Beispiel bei der Klassifikation im Inputmanagement.

Als wesentliches Leistungsmerkmal von Techniken der Künstlichen Intelligenz (KI), die in Unternehmensprozesse integriert werden, gilt die Geschwindigkeit. KI hilft dabei, Zeit zu sparen und meist auch eine höhere Verarbeitungsqualität zu erreichen – insbesondere da, wo Massendaten verarbeitet werden müssen.

Beispiele im Umfeld klassischer Informationsmanagementprozesse wären etwa die automatische Erkennung und Zuweisung von Dokumenten oder E-Mails zu Ordnern, Akten oder Unternehmensprozessen. Ein zunehmend verbreitetes Anwendungsszenario ist die Dokumentenklassifikation im Rahmen des Inputmanagements. Die notwendigen Verfahren zur Einteilung bestimmter Objekte in Klassen, basierend auf einem Algorithmus, existieren bereits seit geraumer Zeit.

Hierbei werden regelbasierte Erkennungsmuster festgelegt: Wenn Fall A eintritt, muss Handlung B ausgeführt werden. Der Arbeitsalltag in vielen Unternehmen ist voll von derartigen Wenn-Dann-Regeln.

Anhand des Beispiels eines Versicherungsunternehmens lässt sich illustrieren, wie dies in der Praxis funktioniert. Ziel der Assekuranz war es, manuelle Prozessschritte zu automatisieren, um vor allem zeitliche Ressourcen beim Scanvorgang im Bereich der Eingangspost einzusparen. Schließlich ist die manuelle Annahme, Verarbeitung und Ablage von Dokumenten langwierig und kostenintensiv.

Vom analogen Dokument zur E-Akte – fehlerfrei und ohne Reibungsverluste

Der modernisierte Workflow am Beispiel der genannten Versicherung sieht heute wie folgt aus: Zugesendete Dokumente werden eingescannt und digital aufbereitet. Eine Software, die mit dem Scanner verknüpft ist, unterstützt bei der automatisierten Dokumentenerkennung. Um welche Art von Dokument handelt es sich? Eine Schadenmeldung, ein medizinischer Befund? Der Scanner ist mit einer Künstlichen Intelligenz für die optische Zeichenerkennung, auch Optical Character Recongnition (OCR) genannt, verknüpft. Mittels einer App kann diese Erkennungssoftware angesprochen und mit der Einordnung des Dokumentes beauftragt werden.

Ist dieser Vorgang abgeschlossen, wird das digitale Dokument kategorisiert an einer vorbestimmten Stelle innerhalb einer E-Akte abgelegt. Diese liefert dem Inputmanagement eine Kennzeichnung zurück, die mit dem Kernsystem für die Bestandsführung verknüpft wird. Der zuständige Sachbearbeiter erhält daraufhin in seinem elektronischen Postkorb einen neuen Auftrag – mit dem Verweis auf das betreffende Schriftgut.

OCR wird immer besser

Nicht immer war die optische Zeichenerkennung derart zuverlässig, dass sie einen automatisierten Workflow unterstützen konnte. Dies zu ändern, hatte sich kürzlich das Fraunhofer Institut in Zusammenarbeit mit verschiedenen Softwareherstellern auf die Fahnen geschrieben. Die Herausforderung: Die meisten Programme zur OCR arbeiteten schlichtweg nicht genau genug. Genauigkeit ist aber für rechtlich und finanziell relevante Dokumente zwingend nötig. Denn schon eine Fehlerquote von 0,1 Prozent je Zeichen genügt, damit pro Dokumentenseite ein Fehler entsteht – der Teufel steckt demnach im Detail.

Ziel war es also, eine „OCR-Engine“ zu entwickeln, die auch bei der Auswertung von umfangreichen Inhalten so wenige Fehler wie möglich bzw. gar keine Fehler produziert. Dazu trainierten die Forscher die OCR-Engine über einen Zeitraum von 27 Monaten. Dabei wurden pro existierendem Zeichen mindestens 5000 verschiedenen Variationen zum Training der Netze verwendet. Weil oftmals die schwankende Qualität des Ausgangsdokumentes eine Fehlerquelle ist, wurden der Software auch historische Texte oder verschiedene Graustufen vorgelegt. Die Folge: Die Software ist nicht nur in der Lage, gut lesbare Texte zu erkennen, sondern auch mangelhaft belichtete Fotos, alte Schriften und sogar Verkehrsschilder oder Plakattexte zu lesen.

Ausblick: Künstliche Intelligenz zur Dokumenten-Klassifikation verbreitet sich

Das Beispiel der Klassifikation im Inputmanagement zeigt auf, wie und an welchen Stellen im Büroalltag Künstliche Intelligenz schon heute gewinnbringend zum Einsatz gebracht werden kann. Doch ohne eine zuverlässige Zeichenerkennung besteht das Risiko einer fehlerhaften Verarbeitung von Dokumenten. Das führt zu ineffizienten Prozessen, wenn es nicht gar zu einem finanziellen Schaden – etwa in Form von Strafzahlungen – kommt.  Die hohe Ergebnisqualität, die die Fraunhofer-Forscher mit ihrer OCR-Engine erzielen konnten, lässt es zu, dass auch sensible Dokumente automatisiert verarbeitet werden können. Und dies wiederum ist eine wichtige Voraussetzung dafür, dass sich KI-Technologie im Inputmanagement zukünftig noch weiterverbreiten wird.

KI basierte Inhalte
KI-basierte Inhaltszusammenfassung: Weniger Lesen, mehr Handeln
Wie Banken mit einer Informationsplattform Wettbewerbsvorteile generieren
Dokumentenmanagement – aber sicher: Wie Banken mit einer Informationsplattform Wettbewerbsvorteile generieren
Automatische Klassifizierung und Verschlagwortung
Automatische Klassifizierung und Verschlagwortung: Ordnung durch KI
Interaktive Dokumente
Interaktive Dokumente: Chatten Sie mit Ihren Dateien!
No-Code/Low-Code trifft auf KI
No-Code/Low-Code trifft auf KI
New Ki Work
New KI-Work: Was ändert sich durch den Einsatz von generativer KI?
My ECM, my Castle
My ECM, my castle
Behördenübergreifende Geschäftsgänge
Behördenübergreifende Geschäftsgänge: Weichenstellung für die Digitalisierung
Die Zukunft der E-Akte liegt in der Cloud
Die Zukunft der E-Akte liegt in der Cloud
Weniger Papierkram und mehr Digitalisierung
Weniger „Papierkram“, mehr Digitalisierung: Das Bürokratieentlastunggesetz IV kommt
Digitale Signatur
Zukunft der Unterschrift: Der Podcast zur digitalen Signatur
Mandantenübergreifende Geschäftsgänge für Kommunen und Behörden
Mandantenübergreifende Geschäftsgänge für Kommunen und Behörden
Weniger Papier, mehr Digitalisierung
Mehr Effizienz dank weniger Papier: Digitale Dokumentenprozesse werden zum Standard
Das OZG 2.0 ist da
Das OZG 2.0 ist da
E-Rechnung Öffentliche Verwaltung
Die E-Rechnungspflicht – eine Chance für die Digitalisierung der öffentlichen Verwaltung
Blogartikel Vertragsmanagement und KI
Effiziente Vertragserstellung und -prüfung mithilfe künstlicher Intelligenz
Onlinezugangsgesetz 2.0.: Die Digitalisierung der Verwaltung verzögert sich weiter
Onlinezugangsgesetz 2.0.: Die Digitalisierung der Verwaltung verzögert sich weiter
Effizientes Vertragsmanagement leicht gemacht
Effizientes Vertragsmanagement leicht gemacht
Effizientes Rechnungsmanagement für Unternehmen
Effizientes Rechnungsmanagement für Unternehmen: Optimieren Sie Ihre Finanzprozesse
Ceyoniq bringt NRW mit der E-Akte voran
Digitalisierung im öffentlichen Sektor – Ceyoniq bringt NRW mit der E-Akte voran
Blogbeitrag Digitale Signaturen
Was es über digitale Signaturen zu wissen gibt
Public Cloud: Der Schlüssel zur digitalen Zukunft von Unternehmen
Public Cloud: Der Schlüssel zur digitalen Zukunft von Unternehmen
Arminia Bielefeld
Wie Arminia Bielefeld mithilfe von nscale die Digitalisierung meistert
Mit nscale können Sie dank der Office-Integration bequem und einfach Ihre Dokumente mit den Office Programmen bearbeiten
EIM für Produktionsunternehmen: Office-Integration sorgt für einfache Kollaboration
Dokumenteninputmanagement leicht gemacht
Dokumenteninputmanagement leicht gemacht – mit nscale eGov von der Ceyoniq Technology
Bitkom veröffentlicht Reifegradmodell „Digitale Geschäftsprozesse“
Wie digital ist mein Unternehmen? Bitkom veröffentlicht Reifegradmodell „Digitale Geschäftsprozesse“